Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Steroids ; 203: 109363, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182066

RESUMO

Decidualization, a crucial process for successful pregnancy establishment and maintenance, involves endometrial stromal cell differentiation. This process is orchestrated by estradiol (E2), progesterone, and other stimuli that increase intracellular cyclic adenosine monophosphate (cAMP) levels. The intracellular progesterone receptor (PR), encoded by the PGR gene, has a key role in decidualization. This study aimed to understand the role of sex steroids and cAMP in regulating PGR expression during the in vitro decidualization of the human immortalized endometrial stromal cell line, T-HESC. We subjected the cells to individual and combined treatments of E2, medroxyprogesterone (MPA), and cAMP. Additionally, we treated cells with PR and estrogen receptor antagonists and a protein kinase A (PKA) inhibitor. We evaluated the expression of PGR isoforms and decidualization-associated genes by RT-qPCR. Our findings revealed that cAMP induced PGR-B and PGR-AB expression by activating the PKA signaling pathway, while MPA downregulated their expression through the PR. Furthermore, downstream genes involved in decidualization, such as those coding for prolactin (PRL), insulin-like growth factor-binding protein-1 (IGFBP1), and Dickkopf-1 (DKK1), exhibited positive regulation via the cAMP-PKA pathway. Remarkably, MPA-activated PR signaling induced the expression of IGFBP1 and DKK1 but inhibited that of PRL. In conclusion, we have demonstrated that the PKA signaling pathway induces PGR gene expression during in vitro decidualization of the T-HESC human endometrial stromal cell line. This study has unraveled some of the intricate regulatory mechanisms governing PGR expression during this fundamental process for implantation and pregnancy maintenance.


Assuntos
Decídua , Receptores de Progesterona , Gravidez , Feminino , Humanos , Decídua/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Endométrio/metabolismo , Progesterona/farmacologia , Progesterona/metabolismo , AMP Cíclico/metabolismo , Células Estromais/metabolismo , Expressão Gênica , Células Cultivadas
2.
J Orthop Surg Res ; 18(1): 930, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057890

RESUMO

Joint capsule fibrosis, a common complication of joint immobilization, is mainly characterized by abnormal collagen deposition. The present study aimed to investigate the effect of extracorporeal shock wave therapy (ESWT) on reduced collagen deposition in the joint capsule during immobilization-induced joint capsule fibrosis. Additionally, the potential involvement of the adenosine A2A receptor (A2AR)-Neurotrophic factor e2-related factor 2 (Nrf2)/Haem oxygenase-1 (HO-1) pathway was explored. Thirty 3-month-old male Sprague-Dawley rats were randomly assigned to five groups: control (C), immobilization model (IM), natural recovery (NR), ESWT intervention (EI), and ESWT combined with A2AR antagonist SCH 58261 intervention (CI). After the left knee joints of rats in the IM, NR, EI and CI groups were immobilized using a full-extension fixation brace for 4 weeks, the EI and CI groups received ESWT twice a week for 4 weeks. The CI group was also treated with ESWT following intraperitoneal injection of SCH 58261 (0.01 mg/kg) for 4 weeks. The range of motion of the left knee joint was measured, and the protein levels of collagens I and III, A2AR, phosphorylated-protein kinase A/protein kinase A (p-PKA/PKA), p-Nrf2/Nrf2, and HO-1 were analysed by Western blotting. The IM and NR groups showed significantly greater arthrogenic contracture than the C group (P < 0.05). Compared to the NR group, the EI and CI groups exhibited significant improvement in arthrogenic contracture (P < 0.05). Conversely, the EI group showed lower contracture than the CI group (P < 0.05). Similar results were observed for collagen deposition and the protein levels of collagens I and III. The intervention groups (EI and CI groups) showed higher levels of p-Nrf2/Nrf2 and HO-1 than the NR group (P < 0.05). Moreover, the EI group exhibited higher levels of p-PKA/PKA, p-Nrf2/Nrf2, and HO-1 than the CI group (P < 0.05). However, no significant difference was found in the A2AR levels among the five groups (P > 0.05). ESWT may activate A2AR, leading to the phosphorylation of PKA. Subsequently, Nrf2 may be activated, resulting in the upregulation of HO-1, which then reduces collagen deposition and alleviates immobilization-induced joint capsule fibrosis.


Assuntos
Contratura , Fator 2 Relacionado a NF-E2 , Ratos , Masculino , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Imobilização , Ratos Sprague-Dawley , Articulação do Joelho/patologia , Cápsula Articular/metabolismo , Contratura/etiologia , Contratura/terapia , Contratura/metabolismo , Colágeno Tipo I/metabolismo , Colágeno/metabolismo , Amplitude de Movimento Articular , Fibrose , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia
3.
Respir Res ; 24(1): 155, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301818

RESUMO

BACKGROUND: Diacylglycerol kinase (DGK) regulates intracellular signaling and functions by converting diacylglycerol (DAG) into phosphatidic acid. We previously demonstrated that DGK inhibition attenuates airway smooth muscle (ASM) cell proliferation, however, the mechanisms mediating this effect are not well established. Given the capacity of protein kinase A (PKA) to effect inhibition of ASM cells growth in response to mitogens, we employed multiple molecular and pharmacological approaches to examine the putative role of PKA in the inhibition of mitogen-induced ASM cell proliferation by the small molecular DGK inhibitor I (DGK I). METHODS: We assayed cell proliferation using CyQUANT™ NF assay, protein expression and phosphorylation using immunoblotting, and prostaglandin E2 (PGE2) secretion by ELISA. ASM cells stably expressing GFP or PKI-GFP (PKA inhibitory peptide-GFP chimera) were stimulated with platelet-derived growth factor (PDGF), or PDGF + DGK I, and cell proliferation was assessed. RESULTS: DGK inhibition reduced ASM cell proliferation in cells expressing GFP, but not in cells expressing PKI-GFP. DGK inhibition increased cyclooxygenase II (COXII) expression and PGE2 secretion over time to promote PKA activation as demonstrated by increased phosphorylation of (PKA substrates) VASP and CREB. COXII expression and PKA activation were significantly decreased in cells pre-treated with pan-PKC (Bis I), MEK (U0126), or ERK2 (Vx11e) inhibitors suggesting a role for PKC and ERK in the COXII-PGE2-mediated activation of PKA signaling by DGK inhibition. CONCLUSIONS: Our study provides insight into the molecular pathway (DAG-PKC/ERK-COXII-PGE2-PKA) regulated by DGK in ASM cells and identifies DGK as a potential therapeutic target for mitigating ASM cell proliferation that contributes to airway remodeling in asthma.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Diacilglicerol Quinase , Diacilglicerol Quinase/metabolismo , Diacilglicerol Quinase/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Células Cultivadas , Proliferação de Células , Miócitos de Músculo Liso/metabolismo
4.
Mol Cell Probes ; 68: 101899, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775106

RESUMO

This study is to investigate the effects of dexmedetomidine on myocardial ischemia-reperfusion (I/R) injury and its molecular mechanisms. H9c2 cell injury model was constructed by the hypoxia/normoxia (H/R) conditions. Besides, cAMP response element-binding protein (CREB) overexpression and knockdown cell lines were constructed. Cell viability was determined by cell-counting kit 8. Biochemical assays were used to detect oxidative stress-related biomarkers, cell apoptosis, and ferroptosis-related markers. Our results showed that dexmedetomidine's protective effects on H/R-induced cell damage were reversed by the inhibition of protein kinase A (PKA), CREB, and extracellular signal regulated kinase 1/2 (ERK1/2). Treatment of dexmedetomidine ameliorated oxidative stress in the cardiomyocytes induced by H/R, whereas inhibition of PKA, CREB, or ERK1/2 reversed these protective effects. Cell death including cell necrosis, apoptosis, and ferroptosis was found in the cells under H/R insult. Interestingly, targeting CREB ameliorated ferroptosis and oxidative stress in these cells. In conclusion, dexmedetomidine attenuates myocardial I/R injury by suppressing ferroptosis through the cAMP/PKA/CREB signaling pathway.


Assuntos
Dexmedetomidina , Ferroptose , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Dexmedetomidina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Apoptose
5.
Neurol Res ; 45(2): 127-137, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36127643

RESUMO

OBJECTIVE: The aim of the present study was to investigate whether serotonin1B (5-HT1B) receptor-adenylate cyclase (AC)-protein kinase A (PKA) signal pathway in the lateral habenula (LHb) is involved in Parkinson's disease-related depression in sham-lesioned and substantia nigra pars compacta (SNc)-lesioned rats. METHODS: The sucrose preference and forced swim tests were used to measure depressive-like behaviors. In vivo electrophysiology and microdialysis were performed to observe the firing activity of LHb neurons and GABA and glutamate release in the LHb, respectively. Western blotting was used to analyze protein expression of 5-HT1B receptors, AC and phosphorylated PKA at threonine 197 site (p-PKA-Thr197) in the LHb. RESULTS: Unilateral 6-hydroxydopamine lesions of the SNc in rats induced depressive-like behaviors. Intra-LHb injection of 5-HT1B receptor agonist CP93129 produced antidepressant-like effects and the antagonist SB216641 induced depressive-like behaviors in sham-lesioned and SNc-lesioned rats. Further, pretreatment with AC inhibitor SQ22536 and PKA inhibitor KT5720 blocked the behavioral effects of CP93129 in the two groups of rats, respectively. CP93129 decreased the firing rate of LHb neurons and release of GABA and glutamate, but increased the GABA/glutamate ratio, while SB216641 induced the opposite effects. Compared with sham-lesioned rats, effects of CP93129 and SB216641 on the depressive-like behaviors, electrophysiology, and microdialysis were decreased in SNc-lesioned rats, which were associated with decreased expression of 5-HT1B receptors, AC and p-PKA-Thr197 in the LHb. CONCLUSION: 5-HT1B receptor-AC-PKA signal pathway in the LHb is involved in the regulation of depressive-like behaviors, and depletion of DA reduces activity of 5-HT1B receptor-AC-PKA signal pathway.


Assuntos
Habenula , Doença de Parkinson , Ratos , Animais , Serotonina/metabolismo , Oxidopamina/toxicidade , Adenilil Ciclases/metabolismo , Adenilil Ciclases/farmacologia , Receptor 5-HT1B de Serotonina/metabolismo , Depressão/metabolismo , Doença de Parkinson/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Glutamatos/metabolismo , Glutamatos/farmacologia , Ácido gama-Aminobutírico/metabolismo
6.
Redox Rep ; 27(1): 270-278, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36357965

RESUMO

Objectives: Caffeine has been shown to reduce the incidence of bronchopulmonary dysplasia (BPD). To investigate the protective mechanism of caffeine in a hyperoxia-based cell model of BPD in vitro.Methods: Type II alveolar epithelial cells (AECs II) were isolated and randomly divided into 6 groups: the normal, hyperoxia, caffeine (50 µM caffeine), antagonist (5 µM ZM241385), agonist (5 µM CGS21680), and DMSO groups. Transfection with siRNA against adenosine A2A receptor (siA2AR) was performed in AECs II.Results: Caffeine alone or in combination with adenosine A2A receptor (A2AR) antagonist inhibited apoptosis, promoted proliferation and reduced oxidative stress (OS). The cyclic adenosine monophosphate (cAMP), protein kinase A (PKA) mRNA, A2AR mRNA and the protein levels of A2AR, phospho-Src, phospho-ERK1/2, phospho-P38 and cleaved caspase-3 were decreased in the caffeine and antagonist groups compared with that in the hyperoxia group. However, the effects of caffeine above were weakened by the A2AR agonist. Knockdown of A2AR showed similar results to caffeine.Discussion: Caffeine can reduce apoptosis, promote proliferation, and alleviate OS in hyperoxia-induced AECs II injury by inhibiting the A2AR/cAMP/PKA/Src/ERK1/2/p38MAPK signaling pathway. Caffeine and A2AR may serve as a promising therapeutic target for BPD in prematurity.


Assuntos
Hiperóxia , Lesão Pulmonar , Recém-Nascido , Humanos , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Cafeína/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Sistema de Sinalização das MAP Quinases , Hiperóxia/complicações , Hiperóxia/tratamento farmacológico , Transdução de Sinais , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Estresse Oxidativo , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia
7.
Phytother Res ; 36(10): 3885-3899, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36017979

RESUMO

There are currently few effective and safe pharmacologic means for inducing beige adipogenesis in humans. This study highlights the role of potato protease inhibitor II (PPI II) in regulating the browning of adipose tissue. The in vitro results showed that PPI II increased the expression of the uncoupling protein 1 (UCP1) protein and gene and beige-specific genes, including Cd137, Cited1, Tbx1, and Tmem26 in vitro. PPI II treatment for three months in diet-induced obesity mice increased the levels of the UCP1 protein in white adipose tissue, causing elevated energy expenditure, thus preventing obesity and improving glucose tolerance. Mechanistic studies further revealed that PPI II regulated the abundance and activity of ß3 adrenergic receptor (ß3 -AR) in white adipocytes. Chemical-inhibition experiments revealed the crucial role of ß3 -AR-dependent protein kinase A (PKA)-p38 kinase (p38)/extracellular signal-related kinase1/2 (ERK1/2) signaling in PPI II-mediated browning program of white adipose tissues. In summary, our findings highlight the role of PPI II in beige adipocyte differentiation and thermogenesis and provide new insights into its use in preventing obesity.


Assuntos
Solanum tuberosum , Tecido Adiposo Branco , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Glucose/metabolismo , Humanos , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/prevenção & controle , Inibidores de Proteases/farmacologia , Transdução de Sinais , Solanum tuberosum/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
8.
Basic Res Cardiol ; 117(1): 37, 2022 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-35842861

RESUMO

We have recently identified a pool of intracellular ß1 adrenergic receptors (ß1ARs) at the sarcoplasmic reticulum (SR) crucial for cardiac function. Here, we aim to characterize the integrative control of intracellular catecholamine for subcellular ß1AR signaling and cardiac function. Using anchored Förster resonance energy transfer (FRET) biosensors and transgenic mice, we determined the regulation of compartmentalized ß1AR-PKA signaling at the SR and plasma membrane (PM) microdomains by organic cation transporter 3 (OCT3) and monoamine oxidase A (MAO-A), two critical modulators of catecholamine uptake and homeostasis. Additionally, we examined local PKA substrate phosphorylation and excitation-contraction coupling in cardiomyocyte. Cardiac-specific deletion of MAO-A (MAO-A-CKO) elevates catecholamines and cAMP levels in the myocardium, baseline cardiac function, and adrenergic responses. Both MAO-A deletion and inhibitor (MAOi) selectively enhance the local ß1AR-PKA activity at the SR but not PM, and augment phosphorylation of phospholamban, Ca2+ cycling, and myocyte contractile response. Overexpression of MAO-A suppresses the SR-ß1AR-PKA activity and PKA phosphorylation. However, deletion or inhibition of OCT3 by corticosterone prevents the effects induced by MAOi and MAO-A deletion in cardiomyocytes. Deletion or inhibition of OCT3 also negates the effects of MAOi and MAO-A deficiency in cardiac function and adrenergic responses in vivo. Our data show that MAO-A and OCT3 act in concert to fine-tune the intracellular SR-ß1AR-PKA signaling and cardiac fight-or-flight response. We reveal a drug contraindication between anti-inflammatory corticosterone and anti-depressant MAOi in modulating adrenergic regulation in the heart, providing novel perspectives of these drugs with cardiac implications.


Assuntos
Corticosterona , Proteínas Quinases Dependentes de AMP Cíclico , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Animais , Cálcio/metabolismo , Catecolaminas/metabolismo , Catecolaminas/farmacologia , Cátions/metabolismo , Cátions/farmacologia , Corticosterona/metabolismo , Corticosterona/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Camundongos , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Fosforilação , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Retículo Sarcoplasmático
9.
Biomed Res ; 43(2): 31-39, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431290

RESUMO

Silibinin is a flavonolignan isolated from milk thistle (Silybum marianum). Silibinin has been reported to possess multiple biological activities; however, its effect on melanogenesis remains unclear. This study investigated the effect of silibinin on melanogenesis in melanoma cells and the associated molecular mechanism. Our findings demonstrated that silibinin markedly increased melanin content in murine B16-F1 and human HMV-II melanoma cells. Silibinin activated intracellular tyrosinase activity and expression of tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2, and microphthalmia-associated transcription factor (MITF). Furthermore, silibinin enhanced the phosphorylation of cyclic AMP-responsive element-binding protein (CREB), protein kinase A (PKA), and p38 mitogen-activated protein kinase (MAPK) but not of Akt and extracellular signal-regulated kinase (ERK). The specific PKA (H-89) and p38 (SB203580) inhibitors significantly attenuated silibinin-mediated melanin synthesis. These results suggest that silibinin is an effective stimulator of melanogenesis through upregulation of the protein expression of melanogenic enzymes activated by the PKA and p38 pathways, leading to CREB phosphorylation and MITF expression. Therefore, silibinin may have potential for use in the treatment of hypopigmentation disorders.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Melanoma , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases , Melaninas/metabolismo , Melaninas/farmacologia , Melanoma/tratamento farmacológico , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/farmacologia , Fosforilação , Silibina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Contrast Media Mol Imaging ; 2022: 7021200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360268

RESUMO

Objective: To investigate the protective effect of miR-542-3p on cardiomyocyte injury and related mechanisms. Methods: A cardiomyocyte hypoxia/reoxygenation model was established. The expression levels of miR-542-3p and PDE4D were detected using qRT-PCR; the luciferase reporter assay system was used to detect the targeting relationship between miR-542-3p and PDE4D; overexpressing miR-542-3p was transfected into cardiomyocytes, and ROS release was detected by immunofluorescence while cellular apoptosis was detected by TUNEL; and the western blot assay was applied to detect the expression of PDE4D, phosphorylated protein kinase A (p-PKA), and phosphorylated cyclic adenosine monophosphate (cAMP) response element-binding protein (p-CREB). Results: Compared with the control group, the miR-542-3p expression level was decreased and the PDE4D expression level was increased in the cardiomyocyte hypoxia/reoxygenation model group. The dual-luciferase reporter assay system confirmed that miR-542-3p could target and regulate PDE4D; the transfection with cardiomyocytes using the overexpressing miR-542-3p could downregulate PDE4D expression, attenuate ROS release during cardiomyocyte injury, and reduce cellular apoptosis rate, while upregulating the expression of p-PKA and p-CREB. Conclusion: The miR-542-3p can negatively regulate PDE4D protein expression and attenuate cardiomyocyte injury through a mechanism related to the activation of the cAMP/PKA signaling pathway.


Assuntos
MicroRNAs , Miócitos Cardíacos , Apoptose , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais
11.
J Bioenerg Biomembr ; 54(1): 9-16, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35038080

RESUMO

Asiaticoside, the major bioactive constituent purified from Centella asiatica, is a pentacyclic triterpene saponin with sugar moieties (glucose-glucose-rhamnose). Its biological activities including anti-inflammation and antioxidant have been widely reported. This study aimed to investigate the role of asiaticoside in diabetic retinopathy (DR). Human retinal pigment epithelium (RPE) cells ARPE-19 were induced by high glucose. Then, cell survival rate, expression of inflammatory factors, oxidative stress, and apoptosis were measured by MTT method, western blot, oxidative stress detection kits and TUNEL respectively. To uncover the underlying mechanism, the levels of cyclic AMP (cAMP) and protein kinase A (PKA) were measured by Enzyme linked immunosorbent assay (ELISA) and PKA activities were detected by the Kemptide phosphorylation assay. Furthermore, cAMP inhibitor SQ22536 was also used to validate the mechanism. Asiaticoside suppressed the inflammation and apoptosis of ARPE-19 cells, and the activities of cAMP and PKA were inhibited upon HG induction while again released after further administration of asiaticoside. However, these effects were all abolished by SQ22536. In conclusion, we have demonstrated in this paper that asiaticoside ameliorates high glucose-induced inflammation and apoptosis of RPE cells by activating cAMP/PKA signaling pathway. asiaticoside-mediated activation of cAMP/PKA signaling pathway may serve as a potential target for the management of DR.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Apoptose , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Células Epiteliais/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia , Triterpenos
12.
J Appl Biomed ; 20(4): 130-140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36708718

RESUMO

Statins are primary drugs in the treatment of hyperlipidemias. This group of drugs is known for its beneficial pleiotropic effects (e.g., reduction of inflammatory state). However, a growing body of evidence suggests its diabetogenic properties. The culpable mechanism is not completely understood and might be related to the damage to pancreatic beta cells. Therefore, we conceived an in vitro study to explore the impact of atorvastatin on pancreatic islet beta cells line (1.1.E7). We evaluated the influence on viability, insulin, low-density lipoprotein (LDL) receptor, and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression. A significant drop in mRNA for proinsulin and insulin expression was noted. Concurrently, a rise in LDL receptor at the protein level in cells exposed to atorvastatin was noted. Further experiments have shown that exenatide - belonging to glucagon-like peptide 1 (GLP-1) analogs that are used in a treatment of diabetes and known for its weight reducing properties - can alleviate the observed alterations. In this case, the mechanism of action of exenatide was dependent on a protein kinase A pathway. In conclusion, our results support the hypothesis that statin may have diabetogenic properties, which according to our study is related to reduced insulin expression. The concomitant use of GLP-1 receptor agonist seemed to successfully revert insulin expression.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Células Secretoras de Insulina , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/farmacologia , Exenatida/farmacologia , Exenatida/metabolismo , Secreção de Insulina , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Atorvastatina/farmacologia , Atorvastatina/metabolismo , Insulina/metabolismo , Receptores de LDL/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34508006

RESUMO

P2X1 receptors are adenosine triphosphate (ATP)-gated cation channels that are functionally important for male fertility, bladder contraction, and platelet aggregation. The activity of P2X1 receptors is modulated by lipids and intracellular messengers such as cAMP, which can stimulate protein kinase A (PKA). Exchange protein activated by cAMP (EPAC) is another cAMP effector; however, its effect on P2X1 receptors has not yet been determined. Here, we demonstrate that P2X1 currents, recorded from human embryonic kidney (HEK) cells transiently transfected with P2X1 cDNA, were inhibited by the highly selective EPAC activator 007-AM. In contrast, EPAC activation enhanced P2X2 current amplitude. The PKA activator 6-MB-cAMP did not affect P2X1 currents, but inhibited P2X2 currents. The inhibitory effects of EPAC on P2X1 were prevented by triple mutation of residues 21 to 23 on the amino terminus of P2X1 subunits to the equivalent amino acids on P2X2 receptors. Double mutation of residues 21 and 22 and single mutation of residue 23 also protected P2X1 receptors from inhibition by EPAC activation. Finally, the inhibitory effects of EPAC on P2X1 were also prevented by NSC23766, an inhibitor of Rac1, a member of the Rho family of small GTPases. These data suggest that EPAC is an important regulator of P2X1 and P2X2 receptors.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/farmacologia , Rim/metabolismo , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Trifosfato de Adenosina , Aminoquinolinas/farmacologia , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Pirimidinas/farmacologia , Receptores Purinérgicos P2X1/genética , Receptores Purinérgicos P2X2/genética , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
14.
J Neurochem ; 153(3): 334-345, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31985073

RESUMO

Brain endocannabinoids serve as retrograde neurotransmitters, being synthesized in post-synaptic neurons "on demand" and released to bind pre-synaptic cannabinoid receptors and suppress glutamatergic or GABAergic transmission. The most abundant brain endocannabinoid, 2 arachidonoyl glycerol (2-AG), is primarily synthesized by diacylglycerol lipase-α (DGLα), which is activated by poorly understood mechanisms in response to calcium influx following post-synaptic depolarization and/or the activation of Gq -coupled group 1 metabotropic glutamate receptors. However, the impact of other neurotransmitters and their downstream signaling pathways on synaptic 2-AG signaling has not been intensively studied. Here, we found that DGLα activity in membrane fractions from transfected HEK293T cells was significantly increased by in vitro phosphorylation using cyclic AMP-dependent protein kinase (PKA). Moreover, PKA directly phosphorylated DGLα at Ser798 in vitro. Elevation of cAMP levels in HEK293 cells expressing DGLα increased Ser798 phosphorylation, as detected using a phospho-Ser798-specific antibody, and enhanced DGLα activity; this in situ enhancement of DGLα activity was prevented by mutation of Ser798 to Ala. We investigated the impact of PKA on synaptic 2-AG mobilization in mouse striatal slices by manipulating D1-dopamine receptor (D1R) signaling and assessing depolarization-induced suppression of excitation, a DGLα- and 2-AG-dependent form of short-term synaptic depression. The magnitude of depolarization-enhanced suppression of excitation in direct pathway medium spiny neurons was increased by pre-incubation with a D1R agonist, and this enhancement was blocked by post-synaptic inhibition of PKA. Taken together, these findings provide new molecular insights into the complex mechanisms regulating synaptic endocannabinoid signaling.


Assuntos
Ácidos Araquidônicos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Lipase Lipoproteica/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
15.
Curr Alzheimer Res ; 17(14): 1280-1293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33602089

RESUMO

Alzheimer's disease (AD) is a persistent neuropathological stipulation manifested in the form of neuronal/synapse demise, the formation of senile plaques, hyperphosphorylated tau tangles, neuroinflammation, and apoptotic cell death. The absence of a therapeutic breakthrough for AD has continued the quest to find a suitable intervention. Apart from various candidates, the cyclic AMPprotein kinase A-cAMP response element-binding protein (cAMP/PKA/CREB) pathway is the most sought-after drug target AD as the bulk of quality literature documents that there is downregulation of cAMP signaling and CREB mediated transcriptional cascade in AD. cAMP signaling is evolutionarily conserved and can be found in all species. cAMP response element-binding protein (CREB) is a ubiquitous and integrally articulated transcription aspect that regulates neuronal growth, neuronal differentiation/ proliferation, synaptic plasticity, neurogenesis, maturation of neurons, spatial memory, longterm memory formation as well as ensures neuronal survival. CREB is a central part of the molecular machinery that has a role in transforming short-term memory to long-term. Besides AD, impairment of CREB signaling has been well documented in addiction, Parkinsonism, schizophrenia, Huntington's disease, hypoxia, preconditioning effects, ischemia, alcoholism, anxiety, and depression. The current work highlights the role and influence of CREB mediated transcriptional signaling on major pathological markers of AD (amyloid ß, neuronal loss, inflammation, apoptosis, etc.). The present work justifies the continuous efforts being made to explore the multidimensional role of CREB and related downstream signaling pathways in cognitive deficits and neurodegenerative complications in general and AD particularly. Moreover, it is reaffirmed that cyclic nucleotide signaling may have vast potential to treat neurodegenerative complications like AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/uso terapêutico , Transdução de Sinais , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Humanos
16.
Food Chem ; 252: 33-39, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29478550

RESUMO

This study was aimed to determine the effect of phosphorylation/dephosphorylation regulated by protein kinase A (PKA) and alkaline phosphatase (AP) on µ-calpain activity at different Ca2+ concentrations. µ-Calpain was treated with AP or PKA at 0.01, 0.05, 0.1 and 1 mM Ca2+. The pH value decreased in the AP group but remained stable in the control and PKA groups during incubation. Except samples incubated at 0.01 and 0.1 mM Ca2+ for more than 20 min, µ-calpain incubated with PKA showed a higher degree of autolysis than control, but lower than the AP group. The content of α-helix structure of µ-calpain increased as phosphorylation level rose. Phosphorylation of µ-calpain at serine 255, 256, 476, 417 and 420 was identified. PKA catalyzed µ-calpain phosphorylation at serine 255, 256 and 476, located at domains II and III, positively regulated µ-calpain activity. These data demonstrated that dephosphorylation and PKA phosphorylation positively regulated µ-calpain activity, which was limited by increased Ca2+ concentration.


Assuntos
Fosfatase Alcalina/farmacologia , Calpaína/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Cálcio/farmacologia , Calpaína/química , Relação Dose-Resposta a Droga , Fosforilação/efeitos dos fármacos
17.
Am J Physiol Regul Integr Comp Physiol ; 311(1): R79-88, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27097660

RESUMO

Adipose tissue PKA has roles in adipogenesis, lipolysis, and mitochondrial function. PKA transduces the cAMP signal downstream of G protein-coupled receptors, which are being explored for therapeutic manipulation to reduce obesity and improve metabolic health. This study aimed to determine the overall physiological consequences of PKA activation in adipose tissue. Mice expressing an activated PKA catalytic subunit in adipose tissue (Adipoq-caPKA mice) showed increased PKA activity in subcutaneous, epididymal, and mesenteric white adipose tissue (WAT) depots and brown adipose tissue (BAT) compared with controls. Adipoq-caPKA mice weaned onto a high-fat diet (HFD) or switched to the HFD at 26 wk of age were protected from diet-induced weight gain. Metabolic health was improved, with enhanced insulin sensitivity, glucose tolerance, and ß-cell function. Adipose tissue health was improved, with smaller adipocyte size and reduced macrophage engulfment of adipocytes. Using metabolic cages, we found that Adipoq-caPKA mice were shown to have increased energy expenditure, but no difference to littermate controls in physical activity or food consumption. Immunoblotting of adipose tissue showed increased expression of uncoupling protein-1 (UCP1) in BAT and dramatic UCP1 induction in subcutaneous WAT, but no induction in the visceral depots. Feeding a HFD increased PKA activity in epididymal WAT of wild-type mice compared with chow, but did not change PKA activity in subcutaneous WAT or BAT. This was associated with changes in PKA regulatory subunit expression. This study shows that adipose tissue PKA activity is sufficient to increase energy expenditure and indicates that PKA is a beneficial target in metabolic health.


Assuntos
Tecido Adiposo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Metabolismo Energético/fisiologia , Proteína Desacopladora 1/biossíntese , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Dieta Hiperlipídica , Intolerância à Glucose , Nível de Saúde , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Desacopladora 1/efeitos dos fármacos , Aumento de Peso
18.
J Neurosci ; 36(9): 2663-76, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26937007

RESUMO

The extracellular matrix (ECM) provides local positional information to guide motoneuron axons toward their muscle target. Collagen XV is a basement membrane component mainly expressed in skeletal muscle. We have identified two zebrafish paralogs of the human COL15A1 gene, col15a1a and col15a1b, which display distinct expression patterns. Here we show that col15a1b is expressed and deposited in the motor path ECM by slow muscle precursors also called adaxial cells. We further demonstrate that collagen XV-B deposition is both temporally and spatially regulated before motor axon extension from the spinal cord in such a way that it remains in this region after the adaxial cells have migrated toward the periphery of the myotome. Loss- and gain-of-function experiments in zebrafish embryos demonstrate that col15a1b expression and subsequent collagen XV-B deposition and organization in the motor path ECM depend on a previously undescribed two-step mechanism involving Hedgehog/Gli and unplugged/MuSK signaling pathways. In silico analysis predicts a putative Gli binding site in the col15a1b proximal promoter. Using col15a1b promoter-reporter constructs, we demonstrate that col15a1b participates in the slow muscle genetic program as a direct target of Hedgehog/Gli signaling. Loss and gain of col15a1b function provoke pathfinding errors in primary and secondary motoneuron axons both at and beyond the choice point where axon pathway selection takes place. These defects result in muscle atrophy and compromised swimming behavior, a phenotype partially rescued by injection of a smyhc1:col15a1b construct. These reveal an unexpected and novel role for collagen XV in motor axon pathfinding and neuromuscular development. SIGNIFICANCE STATEMENT: In addition to the archetypal axon guidance cues, the extracellular matrix provides local information that guides motor axons from the spinal cord to their muscle targets. Many of the proteins involved are unknown. Using the zebrafish model, we identified an unexpected role of the extracellular matrix collagen XV in motor axon pathfinding. We show that the synthesis of collagen XV-B by slow muscle precursors and its deposition in the common motor path are dependent on a novel two-step mechanism that determines axon decisions at a choice point during motor axonogenesis. Zebrafish and humans use common molecular cues and regulatory mechanisms for the neuromuscular system development. And as such, our study reveals COL15A1 as a candidate gene for orphan neuromuscular disorders.


Assuntos
Axônios/fisiologia , Colágeno/metabolismo , Neurônios Motores/fisiologia , Músculo Esquelético/citologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Axônios/efeitos dos fármacos , Bungarotoxinas/farmacocinética , Colágeno/genética , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Morfolinos/farmacologia , Neurônios Motores/efeitos dos fármacos , Mutação/genética , RNA Mensageiro/metabolismo , Receptores Colinérgicos/metabolismo , Transdução de Sinais/fisiologia , Tato , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , beta Catenina/metabolismo
19.
J Physiol ; 594(3): 669-86, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26635197

RESUMO

KEY POINTS: ß-adrenergic stimulation increases cardiac myosin binding protein C (MyBP-C) and troponin I phosphorylation to accelerate pressure development and relaxation in vivo, although their relative contributions remain unknown. Using a novel mouse model lacking protein kinase A-phosphorylatable troponin I (TnI) and MyBP-C, we examined in vivo haemodynamic function before and after infusion of the ß-agonist dobutamine. Mice expressing phospho-ablated MyBP-C displayed cardiac hypertrophy and prevented full acceleration of pressure development and relaxation in response to dobutamine, whereas expression of phosphor-ablated TnI alone had little effect on the acceleration of contractile function in response to dobutamine. Our data demonstrate that MyBP-C phosphorylation is the principal mediator of the contractile response to increased ß-agonist stimulation in vivo. These results help us understand why MyBP-C dephosphorylation in the failing heart contributes to contractile dysfunction and decreased adrenergic reserve in response to acute stress. ß-adrenergic stimulation plays a critical role in accelerating ventricular contraction and speeding relaxation to match cardiac output to changing circulatory demands. Two key myofilaments proteins, troponin I (TnI) and myosin binding protein-C (MyBP-C), are phosphorylated following ß-adrenergic stimulation; however, their relative contributions to the enhancement of in vivo cardiac contractility are unknown. To examine the roles of TnI and MyBP-C phosphorylation in ß-adrenergic-mediated enhancement of cardiac function, transgenic (TG) mice expressing non-phosphorylatable TnI protein kinase A (PKA) residues (i.e. serine to alanine substitution at Ser23/24; TnI(PKA-)) were bred with mice expressing non-phosphorylatable MyBP-C PKA residues (i.e. serine to alanine substitution at Ser273, Ser282 and Ser302; MyBPC(PKA-)) to generate a novel mouse model expressing non-phosphorylatable PKA residues in TnI and MyBP-C (DBL(PKA-)). MyBP-C dephosphorylation produced cardiac hypertrophy and increased wall thickness in MyBPC(PKA-) and DBL(PKA-) mice, and in vivo echocardiography and pressure-volume catheterization studies revealed impaired systolic function and prolonged diastolic relaxation compared to wild-type and TnI(PKA-) mice. Infusion of the ß-agonist dobutamine resulted in accelerated rates of pressure development and relaxation in all mice; however, MyBPC(PKA-) and DBL(PKA-) mice displayed a blunted contractile response compared to wild-type and TnI(PKA-) mice. Furthermore, unanaesthesized MyBPC(PKA-) and DBL(PKA-) mice displayed depressed maximum systolic pressure in response to dobutamine as measured using implantable telemetry devices. Taken together, our data show that MyBP-C phosphorylation is a critical modulator of the in vivo acceleration of pressure development and relaxation as a result of enhanced ß-adrenergic stimulation, and reduced MyBP-C phosphorylation may underlie depressed adrenergic reserve in heart failure.


Assuntos
Cardiomegalia/fisiopatologia , Proteínas de Transporte/fisiologia , Receptores Adrenérgicos beta/fisiologia , Troponina I/fisiologia , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Pressão Sanguínea , Cardiomegalia/patologia , Proteínas de Transporte/genética , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Dobutamina/farmacologia , Feminino , Coração/fisiopatologia , Masculino , Camundongos Transgênicos , Miocárdio/patologia , Miofibrilas/metabolismo , Fosforilação , Troponina I/genética
20.
Cell Mol Life Sci ; 73(9): 1917-25, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26659082

RESUMO

Most ATP-binding cassette (ABC) proteins function as ATP-dependent membrane pumps. One exception is the cystic fibrosis transmembrane conductance regulator (CFTR), an ABC protein that functions as a Cl(-) ion channel. As such, the CFTR protein must form a continuous pathway for the movement of Cl(-) ions from the cytoplasm to the extracellular solution when in its open channel state. Extensive functional investigations have characterized most parts of this Cl(-) permeation pathway. However, one region remains unexplored-the pathway connecting the cytoplasm to the membrane-spanning pore. We used patch clamp recording and extensive substituted cysteine accessibility mutagenesis to identify amino acid side-chains in cytoplasmic regions of CFTR that lie close to the pathway taken by Cl(-) ions as they pass from the cytoplasm through this pathway. Our results suggest that Cl(-) ions enter the permeation pathway via a single lateral tunnel formed by the cytoplasmic parts of the protein, and then follow a fairly direct central pathway towards the membrane-spanning parts of the protein. However, this pathway is not lined continuously by any particular part of the protein; instead, the contributions of different cytoplasmic regions of the protein appear to change as the permeation pathway approaches the membrane, which appears to reflect the ways in which different cytoplasmic regions of the protein are oriented towards its central axis. Our results allow us to define for the first time the complete Cl(-) permeation pathway in CFTR, from the cytoplasm to the extracellular solution.


Assuntos
Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citoplasma/metabolismo , Potenciais de Ação/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Animais , Domínio Catalítico , Linhagem Celular , Cricetinae , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Íons/química , Íons/metabolismo , Mutagênese , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...